Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions.

نویسندگان

  • Chandresh Thakker
  • Ka-Yiu San
  • George N Bennett
چکیده

Escherichia coli strains HL2765 and HL27659k harboring pRU600 and pKK313 were examined for succinate production under aerobic conditions using galactose, sucrose, raffinose, stachyose, and mixtures of these sugars extracted from soybean meal and soy solubles. HL2765(pKK313)(pRU600) and HL27659k(pKK313)(pRU600) consumed 87mM and 98mM hexose of soybean meal extract and produced 83mM and 95mM succinate, respectively. While using soy solubles extract, HL2765(pKK313)(pRU600) and HL27659k(pKK313)(pRU600) consumed 160mM and 187mM hexose and produced 158mM and 183mM succinate, respectively. Succinate yield of HL2765(pKK313)(pRU600) was low as compared to that of HL27659k(pKK313)(pRU600) while using acid hydrolysate of soybean meal or soy solubles extracts. Maximum succinate production of 312mM with a molar yield of 0.82mol/mol hexose was obtained using soy solubles hydrolysate by HL27659k(pKK313)(pRU600). This study demonstrated the use of soluble carbohydrates of the renewable feedstock, soybean as an inexpensive carbon source to produce succinate by fermentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain

Succinic acid (1,4-butanedioic acid) is identified as one of important building-block chemicals. Xylose mother liquor is an abundant industrial residue in xylitol biorefining industry. In this study, xylose mother liquor was utilized to produce succinic acid by recombinant Escherichia coli strain SD121, and the response surface methodology was used to optimize the fermentation media. The optima...

متن کامل

Engineering Escherichia coli to convert acetic acid to β-caryophyllene

BACKGROUND Under aerobic conditions, acetic acid is the major byproduct produced by E. coli during the fermentation. And acetic acid is detrimental to cell growth as it destroys transmembrane pH gradients. Hence, how to reduce the production of acetic acid and how to utilize it as a feedstock are of intriguing interest. In this study, we provided an evidence to produce β-caryophyllene by the en...

متن کامل

In silico profiling of cell growth and succinate production in Escherichia coli NZN111

BACKGROUND Succinic acid is a valuable product due to its wide-ranging utilities. To improve succinate production and reduce by-products formation, Escherichia coli NZN111 was constructed by insertional inactivation of lactate dehydrogenase (LDH) and pyruvate formate lyase (PFL) encoded by the genes ldhA and pflB, respectively. However, this double-deletion mutant is incapable of anaerobically ...

متن کامل

Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli.

Aerobic growth conditions significantly influenced anaerobic succinate production in two-stage fermentation by Escherichia coli AFP111 with knockouts in rpoS, pflAB, ldhA, and ptsG genes. At a low cell growth rate limited by glucose, enzymes involved in the reductive arm of the tricarboxylic acid cycle and the glyoxylate shunt showed elevated activities, providing AFP111 with intracellular redo...

متن کامل

Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica

BACKGROUND Integrating waste management with fuels and chemical production is considered to address the food waste problem and oil crisis. Approximately, 600 million tonnes crude glycerol is produced from the biodiesel industry annually, which is a top renewable feedstock for succinic acid production. To meet the increasing demand for succinic acid production, the development of more efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2013